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Under certain specified conditions the asymptotic stability is a coarse property
{1],(i.e. addition of fairly smooth functions tothe right-hand sides of equations_
does not disturb the asymptotic stability), It is shown below that in this case the
unperturbed system is coarse in a more general sense, namely, any smooth sys=
tem acted upon by fairly small smooth perturbations, can be returned to its un-
perturbed state by a smooth reversible transformation, The value and order of
the perturbations and the domain of existence of the transformation are all es-
timated explicitly, The condition required for the above assertion to hold, is
that of the existence of a Liapunov function admitting, together with its deriva-
tive, specified estimates, This requirement holds, in particular, in the case when
the right-hand sides of the unperturbed system are homogeneous functions, the
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position of equilibrium is asymptotically stable, and its neighborhood contains
no solutions bounded when —oo < ¢ < oo (see [1]), If the system is analytic,
the requirement will hold in at least all critical cases investigated in which the
asymptotic stability with ¢ — oo or ¢ — —oo is fixed,since in these casesthe
Liapunov function will be analytic, or simply polynomial, It follows therefore
from the theorem which we prove, that in all the cases in question, the system
is reduced by a smooth transformation, to the polynomial form, If the unper-
turbed system is linear, then from the theorem proved follows a theorem online-
arization appearing in [2]; if the system is nonlinear but of second order, a the-
orem from [3] ensues, The results obtained in this paper for the nonlinear auto-
nomous systems are extended to the case when the perturbations are continuous
and bounded functions of time. This makes possible the investigation of the
dynamics of the process in the neighborhood of asymptotically stable equilibria
and of periodic modes, ignoring a wide range of external perturbations,

1, Formulation of the problem and the result, Letus considerareal
autonomous system of equations with smooth right-hand sides

z' = f;i (z) + eR; (x), i=1,.., n, |e|<ex, (1.1)
f;00)=R,(0)=0
We shall try to clarify the conditions of existence of a smooth reversible transformation
near the singularity x = (Q , which transforms the system (1, 1) to the form

z = fi (x) (L.2)
We shall also try to find the value and order of the " perturbations” eR; (z) and to es-
timate the domain of existence of such a transformation,
We assume that the right-hand sides of the system (1, 1) are twice continuously differ-
entiable and satisfy the inequalities

i

, .fi ' < Clpm, ' Ri I < cgpm+o’ T < clpm"l
oR ‘ ‘ (1.3)
‘W: < C?.pm+6—1, p= ]|x||22 = (x12 + . + xn2)lh< 8

We also assume that the system (1, 2) admits a Liapunov function V (x) which satisfies
in the region I' : V (z) < d the inequalities

copd << V < vegp?, DV > ppar™-1 (1.4)
l% ' < veppAl
d=wcyd4, ¢y >0, p>0,4>0,v>1

0 0
Df=ﬁ+§;/k;,;;

and Dy is the differential operator acting along the trajectory of (1.2),

We introduce the notation

—1 1
ko=mA ) GOZ%v a:ko—|—00+7, Bo = M (Vo) t7%e  (1,5)

where
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*_ 0 V;l C Vr-t -
G = W_' eo* = :k.+a. d%, C=c, ) ne;®
0
. c’ (\"30)1 | A gOetko-B V’—l (apy — ¢1%) (1. 6)

(e9* + avnegeyd™) (I — 1) + C'd%ct I ALYyl T4

The parameters C’, I and B are restricted by the inequalities
I>1, B>k, C'>C (L7
Theorem, If the conditions (1.3) and (1,4) hold, | & | << &* and ¢, > o*, then
a reversible,continuously differentiable transformation z’ = 2’ (z, €) exists in the open
region Ty:lxj<<b (1.8)
which transforms the system (1, 1) into the system (1. 2).
when m >> 1, we have

* 1
o*:max(1,f1_ Bk ___> (1.9)
Bo T 0 A
: Po(a —IB) —cy* by — Cy*
e* = min , LM
( B, B4C (vt 4q% Vi1 —1 )
b1 (@ >”A——I8 ca*P
TV \ v ald—1)
and for m = 1 we have
* 1
o'*=max<1,..cl____) 1,10
8*=min< Ko Qo —cr* b — 1 d \llA
vnewesd™ " B4 C'd% by )’ 0 T Y \ Ve |

1{ 1/ A ’ 20
b=(——-> _L._lelcd
Veq V; |}v|

where
B = c,* 4 vncyc,d®, B, = ¢c; * 4+ (0 — IB) vncyc,do® (1.11)

, — % da
1<0, |3 < i

If m = 1,the functions f; (x) are linear and the eigenvalues of the linear part satisfy
the conditions 0 << ReA; < . . . << Re A, then

o* =0 for RReCl, o*=1 for R, C* (1L.192)
* _ Re Al
es0° (an + V')
hy) 6161+0
b=—c —|e| 7+
122 lel |2
where — -
(1 + o) ReA, — Red, + el V(1 + af ) <A< (L.13)
(1 + o) ReA,
The proof of this theorem which is given below (Sect. 2), utilizes the lemmas given in
Sect, 3 of this paper,
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2, Proof of the theorem, Let
z=z@,¢e,1), e=¢ +1(x==2z(, ¢ 0 =2) (2.1)

be a one-parameter group of transformations preserving Eq, (1. 1), the point = 0 and
translating the parameter ¢. Let also
v

Tt X=g+Y @5
the operator of algebra corresponding to this Zgroup and
=2+ Y it er) 5
be the operator of differentiation along tLe trajectory of the system (1, 1). Then
[D,X] = R¥, R*ZZRi-a% (2.2)
i

The above operator equation has the following n corresponding scalar equations

9z, af dR,
Yi+em gt =Y (Freg p@at s @
i j

Our aim is to prove the existence of a continuously differentiable solution of Eq. (2. 3),
and to obtain the necessary estimates,

If E; (x, &) is a certain continuous solution of the system (2. 3), then the final equa-
tions of the transformations (2, 1) of the group will be obtained, in accordance with the
Lie theorem [4],in the form of the solution z; = x; (z', €', 1) of the following Cauchy
problem: ] 4
"‘"i','el =& (%, e), 'ﬁ' =1 x; lr=0 =z, ¢ lt=0 =g’ (2.4
The theorems of existence and continuous dependence of the solutions on the initial pa-
rameters enable us to estimate the region in which the solution z; — z; (z', &', 1)
exists and is continuous in z’ for 0 < T <, &. By definition the transformations (2, 1),
(z; = x; (#', &, T)) transform the system (1. 1) into the system ;" = f; (2') +
&’R; (), Since ¢ = ¢ -1, ¢ = (0 when T -+ ¢, Consequently the transformation
2y = z; (2, 0, &) transforms the system (1. 1) into the system & = f; (), i.e. into
(1.2),

Next we should prove the existence of a continuous solution of the system (2.3). Con~

sider, in the space (z, ¢) , a semi-infinite cylinder Z =T x #: V< I, t >0,
If the condition (2, 6) given below holds, then all trajectories of the system (1. 1) except
one (r = () which penetrate into 7 through its base I' 1eave it through its lateral
surface, THus a segment .S of the space (x, f) bounded by the set of trajectories of the
system (1. 1) emerging from the points V (z) = ! and by the plane ¢ == (, contains
the whole of Z.

To obtain the condition (2. 6), we find an estimate from below for the function DV ()

DV = DfV+32Ri%>uOV”““—!s|l/Bl“"—}— L RIEX O (2.5)

dxy

l/ (BT 4t () > pob e — e [ meaprsovespi-s =
(Ro — | & ] vneocadde) Vithe
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We obtain DV > 0 if
[ef << —Ro_ (2.6)

VICoCad %0

Let us consider the Cauchy problem for the following hyperbolic system:
D (t, z,8) = Z( el ) Pe(t,z,8), $:(0,2,8) = Ri(x) (2.7

i

Since S O Z and the coefficients of v; (¢, x, ¢) appearing in the right-hand sides of
the system (2. 7) are continuously differentiable, then by virtue of Lemma 1 a solution
WP; (¢, &, &) of the Cauchy problem exists, is unique and continuously differentiable in Z.

By Lemma 2, the uniform convergence of the integrals
o« [

, 0
Ii(z,e)= % V(¢ x,e)dt, Ji(x,8) = g N dt

7
] 8
for ¥V <! guarantees the existence of continuously differentiable solution

Ei(z,0) = Li(z, 9 (2.8)

of the system (2, 3). b (@ €) '

To prove that the integrals converge uniformly, we construct an estimate for the func-

tions ; (£, r, €). The following differential inequality holds:
Do (e* +e|c*) Vi, o= (h*+ ...+ (2.9
In fact, multiplying the i-th equation of (2,7) by 1; and adding all equations, we obtain

vagz( )Wi“%]<
ik
(c1p™ 1 + | 8| cap™ 1) ZN% el < (o™t + | e cap™149) Y v

The first inequality of (1,4) and the definitions (1, 5) now yield together the inequality
(2.9).
Consider the case of m > 1. The function
u=C'Ve {1+ aVe)" (2.10)
majorizes the function v (£, x) if ¢’ >> C and the parameters a, B, [, C satisfy the
conditions of the theorem,
We prove this assertion by assuming the opposite, We have

u(0,2)—2(0,2) =CV*—VREL . FR32>CV*—
¥V ne™%> ¢, Vi ;W% — ¢, Y 7 VIO 4, ~(mi0)| 4

i,e, when ¢= 0, v < u. Now we assume that the difference u — » becomes nega-
tive somewhere in Z , Then by virtue of the property of the trajectories of the system
(1. 1) guaranteed by the condition (2, 6), we can find a trajectory emerging from T such,
that we shall have u — v > 0 along this trajectory up to a certain point A at whichwe
shall have u = p. Consequently, at the point A of this trajectory we obtain

u=v, Dv>Du (2.11)

-t
Bx

Let us find the difference
Do — (e1* + 121 ¢*) V¥ > Du — ()* + | 8] %) Viu = (2.12)
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Vm(i _: R [aDV — alVB1 fg(a — lﬁ)VﬁzDV] _

u
(e*+lele) Viu= AT (03 + aVPrwy)

0 =aDV — alV®D (% L | g |, it
W, = (@ — IBDV — (e1* + | & | ¥ Ve
at the point-4 . Using (2, 5) and the condition that § > k,, we obtain
01 > [ (b — | & | v7cee,d®™) — (c1* - | €| ¢g* + ald® ¥y pithe
03 > [{e — IB) (o — [ €] VReoeyd™) — (cr* + [ & | cg*)] Ve

By virtue of the choice of g*(1.9) we find that o, > 0, while a and & from (1. 6) yield
®, > 0. Taking into account (2. 11), we find that at the point 4 = 2

Dv>Du> (e,* | e} e ®) VFo
which contradicts the inequality (2. 9). We therefore have

vt 2) Sult,a) (2.13)
everywhere in 7 ,

Let us now find an estimate for the functions &; (z, &)

¢ crye-b 1
Ei(z,8) = Ii(;r,s)g(g u(t, r)dt = 20 _1)[ e —  {2.14)
— _ vt
(4 +avBet | _ l_ a(l—1)

The definition of & and the first condition of (1. 9) together yield @ — B > (. There-
fore the functions §; (x, &) are continuous in T

cvebd  ¢qoP
8@ O | <=y S = =M = max|g; | (2.15)

The uniform convergence of the integrals J;; (z, ) and, consequently, the continucus
differentiability of the functions &;, are proved in the similar manner,

The equations and the boundary conditions of the corresponding Cauchy problem are
obtained from (2. 7) by a single differentiation with respect to the variables x;, and the
estimates are derived with the help of a majorant of the form (2. 10).

Let us now consider Eqs /2,4). The functions §; are clearly continuously differentiable

in a close cube 1 d \i/A
<5 () =h

By virtue of the theorem of existence,uniqueness and differentiability with respect to
the initial values, the solution z = z (z’, €', ) of the system (2.4) is continuously dif-
ferentiable with respect to ;" and T for |T]<C|e| and |2’ | < b <C by, provided
that the following condition holds:

by—b

le| <5~ M= max|§|

Taking into account the definition (1,9) of b and the estimate in (2. 16) we see that the
above condition holds since | & | <C e®. The positiveness of e* and ¢ in (1,9) and (1.6)
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is guaranteed by the condition that @, > ¢o*, and the positiveness of by the condi-
tion | e | << e*. From (1,9) we see that the condition (2. 6) also holds,

Let us now consider the case m = 1. The only difference from the previous case is
in the choice of the majorizing function

u=CVeeM, C'>C
At the point A where the inequality u — » >> 0 is assumed to fail, we obtain, by vir-
tue of the conditions (1. 10},
Do—(e* +]e|la*)v>Du—(o*+|ele*)u=
I+ @ (po — | & | vregead®) — (6* + el e*) Vu > 0
We can also easily establish that the quantity b defined by the last formula of (1, 12) is
positive owing to the condition | & | < g*. In the present case the value M = max| &i |
is obtained from the estimate

' cve "d*
i§a1<§ u(t,z)dt = CV«§ M — -_m—<-%]— =M

Assume now that m = 1, the functions f; (z) are linear, and the eigenvalues of the
linear part of the system (1. 1) satisfy the conditions

0 < RelA, << ... << Red,

In this particular case the estimates can be somewhat simplified and the estimate for o
improved, The system (1, 1) (real roots are assumed simple) assumes, for ;= —1 >0,

the for
€ ™ dxi/dtl = — Rehixi + Im hiyi — eR;, l Ri l < czp“" (2., 16)
dyi/dt, = — ImA;z; — Redhiyi — eRi, i=14, .., n,
dzj/dtl = - l}Zj —_ SRj, j=n+14, ... n

The equations of the corresponding Cauchy problem in the region p<l 8, 4, >0

ield the estimate _
’ Dy, v< (— Red, + e ¢,V nde)w (2.17)

where D), denotes the differential operator acting along the trajectory of the system
(2. 16), The majorizing function is taken in the form

u=C'p%eM, C' >C
At the point A where the inequality u — » >> 0 is assumed to fail we have u = v,
and Dyw>Du =\ —a(Reh, + | & | cgnde)l v
If Ais chosen according to the condition (1,13) and || <C &*, then
Dyv> (— Red + | 8| CzV’_lﬁa) v

which contradicts the inequality (2. 17), Therefore in ['u definitely majorizes v @ v
u. Returning to the variable ¢ we obtainat £ 0
u = C'pae—M
According to Lemmna 3, the solution of (2, 3) is given by the formula
T{x}

L@ = %t 2)de
0
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where ; is the solution of the Cauchy problem (2.7) and the function T (z) represents
any stationary solution of the equation DT = 1. Let us consider the solution of this
equation with the boundary condition T (x) {pzs = ) , Since we have the estimate

(Redy —|e|eynbo) p < == < (Red, + | & | cand°) p (2.18)

then the system (1, 1) is asymptotically s’cable as {— — oo when the condition(1.12)
holds. According to Lemma 4, T (z) is the time taken by the representative point of
the system (1, 1) with the initial conditions on the sphere p = § to arrive at the point
with coordinates &, ..., n. This fact alone is sufficient to prove rigorously that T (z)
is continuous within the sphere p < 8 with the point p = () excluded. Integrating
the inequality (2. 18) from 0 to T (x) we obtain

(Redy — |&]eynd®) T (2) < f £ J (Re A, + | €] cand?) T (2)
This shows that in the region I' where p < 6
1 1nl~§—l<T(x)<0

Re A+l &l cond®

The estimate for &; {z, &) yields
Tix)

i
t O
ml<| { oo oar|< § nat = G erre -1
0 T{x)
The choice of A is guaranteed, in accordance with (1, 13), by the condition le | < e*
(1 + o) Red, — Red, +|e]e8° (1 + o) n + V)< (1 4 o) Red,
Since A > 0, we have

C/O& }\‘ 6
8] < EE- exp In] |

n E—

Re An -+ | 8] cnd° p

Cp* /__6_) M(Rer, + | € [emd?
AoLp

The choice of } according to formula (1, 13) implies, that

A
=g — 0
rECT R A, + | 8] cnd® > (2.19)

therefore

oL~% y ]
<8 p < oy (2. 20)

The formulas (2, 19) and (2. 20) show that the functions are continuous in the sphere p <
§ including the point p == 0,for any ¢ >> 0. The choice of A according to (1.13)
ensures that & > 0, since ' can be made to differ fromm € as little as required.

3, Proof of the lemmas, Consider the Cauchy problem (Egs, (2. 7))
D‘l?i(t,x,e)::Z( —}-8 )tp,,(t z, &), $; (0, z, &) = R, ()
3

Lemma 1., The solution of the Cauchy problem in the region Z is well defined,
unique and continuously differentiable, The idea of proving such assertions for the hyper-
bolic type systems was first proposed by Petrovskii [5] andis as follows, Since I} is a
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differential operator acting along the trajectories of the system (1.1), D = d / dt, i.e.
by virtue of (1. 1) D is a total derivative, Let £ =& (¢, &) be a general solution of-
this system, and z, = u (0, z,). Then z, = u (—¢, z).

Consider the region §'.of the space (2, ) formed by the set of trajectories of (1. 1) emer-
ging from T (V (r) < d) at ¢t = 0. As we said before, § O Z. Letus fixin Z an
arbitrary point (¢, z) and denote by L the part of the trajectory between the point (£,
z) and its intersection at some point (0, x,) with the plane £ = (). Integrating the
equations of (2. 7) along the curve L, we obtain

of;
'lpi(t,x,8)—¢i(0,x0,8)=§2(ax + az )\pkdt
3
and for every z & I' we have x, = u (—¢, z) & I'. By virtue of the initial conditions

of . dR,
Vilt, 2, €)= Ry (— £, 2) + | (Za—f; +eg )mpk i @
L k

It is clear that every solution of the Cauchy problem (2,7)-is also a solution of the integ-
ral equations (3, 1) and vice versa. To continue with the proof, we use the following sys=
tem of successive approximations:

‘Pl(o) (tv z, 8) = R; (u (_ L, .’l}))
1Pi(j+1) t,z,e)=R;(u(—t, 2)) + E Z ( 72, +e - ) 1p(J) dt

and we find that the proof does not differ at all from that given in [4] for a second order
system, It appears that a numerical majorizing convergent series can be constructed, and
this implies the uniform convergence of the series

O (¢, z) + ﬁ WD (¢, z, &) — Pi¥ (¢, 7, 2))
=0

which proves that the solution of the Cauchy problem,is continuous in Z

Lemma 2, Let ¥; (£, z, &) be a solution of the Cauchy problem, let the integrals
I; and J;; converge uniformly for V (x) < ! and let 11m YP; (¢, ) = 0. Then the
functions

B (=, e)—S Vi (t, z, &) dt

yield a continuously differentiable solution of the system (2, 3).

Proof. Clearly it is sufficient to show that the functions E; (x, ) satisfy the sys-
tem (2, 3), Integrating Eqs, (2,3) from 0 to oo and taking into account the initial con-
ditions, we obtain % 51,8 . o,

w2 e i)
Z(f" Oz, oz, ) SZ("" Oz )dt
k

0 k

—S aa‘fl dt = wi(o’ z, 8)_¢i(ms Zz, 8) = Ri(l‘)

0
Lemma 3, Let ¥; (£, z, &) be a solution of the Cauchy problem and T (z) be an
arbitrary stationary solution of the equation DT = 1. Then the functions
T(x)

L@ e)= | %tz 0)dt
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yield a solution of the system (2. 3).
Proof. ()

Tix
%, of* P T
Z(fk**erx;'““ﬁk ijk ) “‘ka*( \ Tt x>**axk)*
b 3 0
T(x x
of av,
V Yot =— | Fratw @@, e 000 =
¢

ipi(Ov Z, 8) +¢z (Tv Z, S)(DT - i) = Ri(x)

Corollary. Let {;* (t, x) be any solution of Egs. (2,7) and let T, (z) and T, (z)

be the two different solutions of the equation DT = 1. Then
Ta(x)

@ = § v* ¢, 0a

are components of the operator Ty(x)
Y = J&* ()0 0z,
1

of the one-parameter symmetry group of the system (1, 1), The proof follows from com-
bining the relations

[D,X,J=R* [D,X,]=R*, Y=X,—X,:[D, Y] =0

Lemma 4. Let T (z) be any solution of the equation DT = 4. Then ¢ =
T (x) — T (xy) is the time of motion along the trajectory of the system (1, 1) from
the point z,to the point .

Proof, 1:DT=.§;T(u(xo, 1)

Fron: this follows T (u (zgt)) = ¢ + @ (z,). When ¢ = 0, ® (zy) = T (x,), conse-
quently t = T (z) — T (z,).
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