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Under certain specified conditions the asymptotic stability is a coarse property 

[l],(i. e, addition of fairly smooth unctions tothe right-hand sides of equations 
does not disturb the asymptotic stabiIity). It is shown below that in this case the 

unperturbed system is coarse in a more general sense, namely, any smooth sys- 
tem acted upon by fairly small smooth perturbations, can be returned to its un- 
perturbed state by a smooth reversible tr~sformation. The value and order of 
the perturbations and the domain of existence of the transformation are aII es- 
timated explicitly. The condition required for the above assertion to hold, is 
that of the existence of a Liapunov function admitting, together with its deriva- 

tive, specified estimates, This requirement holds, in particular, in the case when 
the right-hand sides of the unperturbed system are homogeneous functions, the 
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position of equilibrium is asymptotically stable, and its neighborhood contains 

no solutions bounded when --CO < t < CO (see [l]) , If the system is analytic, 

the requirement will hold in at least all critical cases investigated in which the 

asymptotic stability with t --+ 00 or t -+ -CO is fixed, since in these cases the 
Liapunov function will be analytic, or simply polynomial. It follows therefore 
from the theorem which we prove, that in all the cases in question, the system 

is reduced by a smooth transformation, to the polynomial form. If the unper- 

turbed system is linear, then from the theorem proved follows a theorem online- 
arization appearing in [2] ; if the system is nonlinear but of second order, a the- 
orem from [3] ensues, The results obtained in this paper for the nonlinear auto- 

nomous systems are extended to the case when the perturbations are continuous 

and bounded functions of time. This makes possible the investigation of the 

dynamics of the process in the neighborhood of asymptotically stable equilibria 
and of periodic modes, ignoring a wide range of external perturbations. 

1. Formulation of the problem and the rerult. Let us considerareal 
autonomous system of equations with smooth right-hand sides 

51’ = fi (X> + ERi (4, i=l, . . . . n, IeI<e*, (1.1) 
fi (0) = Ri (0) = 0 

We shall try to clarify the conditions of existence of a smooth reversible transformation 
near the singularity 5 = 0 , which transforms the system (1.1) to the form 

Xi ’ L fi tx) (1.2) 

We shall also try to find the value and order of the “perturbations” ERi (2) and to es- 
timate the domain of existence of such a transformation. 

We assume that the right-hand sides of the system (1.1) are twice continuously differ- 

entiable and satisfy the inequalities 

We also assume that the system (1.2) admits a Liapunov function V (x) which satisfies 

in the region I’ : V (x) & d the inequalities 

c,p* < V < vcap*, D,V > yg~A+~-l (1.4) 
W I-l %i 

< Yq+’ 

d = vq,G*, co > 0, P > 0, A > 0, v > 1 

where 

and Df is the differential operator acting along the trajectory of (1.2). 
We introduce the notation 

m--l 
ko= A’ Go=+, a=k,+%+G, po = p (vco)-‘-ko (1.5) 



Asymptotic stability and smooth equivalence of ordinary equations 993 

. Cl v/n 
Cl = - 

k. ’ 
c2* = ca ?E 

CO 
-&JO, 

k,+ua 
CO 

c = c2 )&,a 

a= C’ (vco)l ’ * d-+ke-B i/n (up0 - cl+) 

(ca* + avnc,cadu’) (I - 1) + C’d”%; 1 *z J&I I* 
(1.6) 

The parameters c’, l and fi are restricted by the inequalities 

l>L P>k,, C’>C (1.7) 

Theorem. If the conditions (1.3) and (1.4) hold, 1 E 1 < E* and ‘3s > CJ*, then 

a reversible,continuousIy differentiable transformation 2’ L- X’ (x, E) exists in the open 
region rr : I5i I< h (1.8) 

which transforms the system (1.1) into the system (1.2). 

When m > 1 , we have 

i3* = max 1 ,$+ZfI-k,,-+) 

wn - cl* 

’ B+C’(~C,)~I*~“~ I/n/Z--i 

and for m =C 1 we have 

fJ*=max 1,$--f ( ) 

(1.9) 

(1.10) 

where 
B = c2* + vncoc2dor, B, = c2 * -I- (a - @) vn~~d@ (1.11) 

If m = 1, the functions fi (z) are linear and the eigenvalues of the linear part satisfy 

the conditions 0 < RCA, < . . . < Re I,,, then 

a* = 0 for Ri E Cl, U* I= 1 for Ri E C2 (1.12) 

e* = Re hr 

c,lY (an + v/n ) 

where 
(1 + (I) Re A,, - Re A, + 1 e Ic2 I/;(1 + ufK6)’ < h < (1.13) 

(1 + 0) Re L 

The proof of this theorem which is given below (Sect. 2),utiIizes the lemmas given in 
Sect, 3 of this paper, 
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2. Proof of the theorem. Let 

5 == 2 (2’; E’, r), & * 8’ + ‘t (z = Ic (2’, e, 0) = z’) (2. I) 

be a one-parameter group of transformations preserving Eq. (1. l), the point x = 0 and 

translating the parameter t;. Let also 

the operator of algebra corresponding to this group and 

be the operator of differentiation along the trajectory of the system (1.1). Then 

[D, X] = R*, R* = z R+ w 2) 
i 

The above operator equation has the following n corresponding scalar equations 

z_+es T;j(x,e)+ Ri (2.3) 
3 i 

Our aim is to’prove the existence of’a continuously differentiable solution of Eq. (2.3), 

and to obtain the necessary estimates. 
If Ei (x, e) is a certain continuous solution of the system (2.3), then the final equa- 

tions of the transformations (2.1) of the group will be obtained, in accordance with the 

Lie theorem [4], in the form of the solution xi * xi (IC’, E’, ‘c) of the following Cauchy 

problem : az 
. -+ Ei(X, E), g = 1; XiITZO = x;, 8 lTZO = E’ (2.4) 

The theorems of existence and continuous dependence of the solutions on the initial pa- 

rameters enable us to estimate the region in which the solution zi = Xi (5’, E’, 7s) 

exists and is continuous in I’ for 0 ,( T < E. By definition the transformations (2.1) , 

(Xi = xi (x’, E’, ‘c)) transform the system (1.1) into the system .ii” = fi (x’) + 

E‘R~ (r’), Since E = E’ +a, e’ = 0 when ‘G : : E . Consequently the transformation 

Ii == Xi (3’, 0, E) t ransforms the system (1.1) into the system ki’ = fi (x’), i. e. into 

(1.2). 
Next we should prove the existence of a continuous solution of the system (2.3). Con- 

sider, in the space (z, t) , a semi-infinite cylinder 2 = I? s t: V < 1, t > 0. 
If the condition (2.6) given below holds, then all trajectories of the system (1.1) except 
one (X - 0) which penetrate into 2 through its base r leave it through its lateral 
surface. T&s a segment S of the space (5, t) bounded by the set of trajectories ofthe 

system (1.1) emerging from the points V (x) * l and by the plane t :~z b, contains 
the whole of 2. 

To obtain the condition (2.6), we find an estimate from below for the function D Ti (z) 

DV=D~V+e~R~~>~oV1t’~“-~~[~R~~+...+K,,”~ (2.5) 
i 

1 
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Let us consider the Cauchy problem for the following hyperbolic system: 

DWi(l,s,e)=C(~+~~)~,(t,z,E), $Q(O,X,e)=R+) (2.7) 
k 

Since &’ 2 2 and the coefficients of $ (t? 5, E) appearing in the right-hand sides of 

the system (2.7) are continuously differentiable, then by virtue of Lemma 1 a solution 
qi (t, z, E) of the Cauchy problem exists, is unique and continuously differentiable ir3.Z. 

By Lemma 2, the uniform convergence of the integrals 

for V < 1 guarantees the existence of continuously differentiable solution 

of the system (2.3). 
El (5, 8) = Ii (x, 8) (2.8) 

To prove that the integrals converge uniformly, we construct an estimate for the func- 

tions %i (t, 5, 8). The following differential inequality holds: 

Dv< (cy* + I 8 1 cz*) vfv, 2, ‘= (*12+ .*. $_$n2)l’~ (2.9) 

In fact, multiplying the i-th equation of (2.7) by 91 and adding all equations, we obtain 

The first inequality of (1.4) and the definitions (1.5) now yield together the inequality 

(2.9). 
Consider the case of m > 1. The function 

a = C’VE (1 -+ ~v~~)-* (2.10) 

majorizes the fitnction v (t, z) if C’ > C and the parameters 01, b, I, C satisfythe 
conditions of the theorem, 

We prove this assertion by assuming the opposite, We have 

~(~,~)--a~,2)=CIV”-j/Rl~+...+RRn~>~Va- 

cg y’i pwa & C% fi cFP - c, JG v~~u)/A~~-(*~u)~A E 0 

i.e. when t = 0 , 0 < u. Now we assume that the difference u - v becomes nega- 
tive somewhere in 2 . Then by virtue of the property of the trajectories of the system 

(1.1) guaranteed by the condition (2.6), we can find a trajectory emerging from r such, 
that we shall have u - v > 0 along this trajectory up to a certain point A at which we 
shall have u = V. Conse~ently, at the point A of this trajectory we obtain 

u = v, Dv&Du (2.11) 
Let us find the difference 

Dv - (cl* + 1 e 1 q,*) Vk% > Du - (cl* + 1 (z 1 cz*) Vkeu = (2.12) 
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u 

v (1 + aVf+) [czDV - nZV@’ + a (a - Q3) VbV] - 

(cl* + 1 e 1 cz*) V”% = 

ml E cd V - al V@+l) - (cl* + 1 & 1 ca*)Vl+fi@ 
co, s (a - l@)D V - (cl* + 1 E 1 cz*) i’ltko 

at the point A . Using (2.5) and the condition that @ >, k,, we obtain 

01 > fa o&J - 1 E 1 Yncoc,d50) - (cl* + 1 & 1 es* + crzdfi-k@)]Vl+k@ 

@a > [(a - EB)(y, - 1 E 1 vncocp) - (cl* + 1 E 1 ca*)]vl+k* 

By virtue of the choice of E* (1.9) we find that o2 2 0, while a and E from (I. 6) yield 

a1 > 0. Taking into account (2. ll), we find that at the point A E Z 

Dv>Du> (Cl* + l&f CZ*)VkeU 

which contradicts the inequality (2. ‘3). We therefore have 

v 0, 2) a n (G 2) 
everywhere in 2 . 

Let us now find an estimate for the functions Ei (z, e) 

(2.13) 

1 I 1 
fyva-B 

(1 + a@%)‘-1 & m 
= a(l-1) 

The definition of rtl and the first condition of (1.9) together yield a - p > 0. There- 

fore the functions Ei (x, E) are continuous in I’ 

(2.15) 

The uniform convergence of the integrals Jij (x, E) and, consequently, the continuous 
differentiab~~ty of the functions lji, are proved in the similar manner. 

The equations and the boundary conditions of ttie corresponding Cauchy problem are 
obtained from (2.7) by a single differentiation with respect to the variables ~1, and the 

estimates are derived with the help of a majorant of the form (2.10). 

Let us now consider Eys (2.4). The functions & are clearly continuously differentiable 

in a close cube 
IZJ=+(&-~~A=~Q 

By virtue of the theorem of existence, uniqueness and differentiability with respect to 
the initial values, the solution x = 2 (x’, E’, z) of the system (2.4) is continuously dif- 
ferentiable with respect to Xi’ and z for 1 T I< 1 e 1 and 1 x’ 1~ b < b,, provided 
that the following condition holds: 

Taking into account the definition (1.9) of b and the estimate in (2.16) we see that the 

above condition holds since 1 E 1 < e*. The positiveness of E* and a in (1.9) and (1.6) 
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is guaranteed by the condition that u. > (r*, and the positiveness of b by the condi- 
tion 1 e 1 < e*. From (1.9) we see that the condition (2.6) also holds. 

Let us now consider the case ??z 2 1. The only difference from the previous case is 
in the choice of the major&zing function 

rb = C’Vaeht, C’ > C 

At the point A where the inequality u - o > 0 is assumed to fail, we obtain, by vir- 
tue of the conditions (1. lo), 

Dv - (ci* + 1 E 1 ca*) u > Du - (cl* + I 8 1 cz*) ZJ = 

Ih -I= @ (po - 1 8 1 vnc&2do~) - (Cl * f 1 E 1 @)I VU > 0 

We can also easily establish that the quantity b defined by the last formula of (1.12) is 
positive owing to the condition 1 e 1 < 8 *. In the present case the value M = max\ Ei 1 
is obtained from the estimate 

Assume now that m = 1, the functions fi (z) are linear, and the eigenvalues of the 
linear part of the system (1.1) satisfy the conditions 

0< Reh,& . . . & Reh, 

In this particular case the estimates can be somewhat simplified and the estimate for (3 

improved. The system (1.1) (real roots are assumed simple) assumes, for tl- -t > 0 s 
the form 

Okif&, = - Re& + Imhiyi - eRi, 1 Ri \ < cS$+’ (2.16) 

dgJdt, = - IE.I~~Q - Rehiyi - ERit i = 1, . . . . nl 

dzjfdt, = - ~LIz~ - ~RI, i = n,+ 1, ,.., n 

The equations of the corresponding Cauchy problem in the region p < 6, t, > 0 
yield the estimate 

(2.17) 

where D,, denotes the differential operator acting along the trajectory of the system 

(2.16). The majorizing function is taken in the form 

u = C’paektl, C’ > C 

At the point A where the inequality u - ZJ > 0 is assumed to fail we have u L-- v t 
and 

Dftv > Dt,u = [A - a (Reh, -t I E / C@a)l v 

If k is chosen according to the condition (1.13) and 1 E 1 < E*, then 

D~,V > (- Re hl + I 8 I cil/~W 2~ 

which contradicts the inequality (2.17). Therefore in I%. definitely majorizes o : v ,( 

-a. &%umi.ng to the variable t we obtain at t < 0 
u =5 q&?-hf 

According to Lemma 3, the solution of (2.3) is given by the formula 
T(x) 

Ei(‘z) = 1 4% (4 +Jt 
0 
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where qi is the solutron of the Cauchyproblem (2.7) and the function T (J) represents 
any stationary solution of the equation I)T L- 4. Let us consider the solution of this 

equation with the boundary condition T (5) jp=s - 0 . Since we have the estimate 

then the system (1.1) is asymptotically stable as t -+ - 00 when the condition(l.12) 

holds. According to Lemma 4, T (x) is the time taken by the representative point of 

the system (1.1) with the initial conditions on the sphere p = 6 to arrive at the point 

with coordinates xl, .**, 5,. This fact alone is sufficient to prove rigorously that T (z) 
is continuous within the sphere p & 6 with the point p = 0 excluded. Integrating 
the inequality (2.18) from 0 to T (x), we obtain 

(Rehl-- ~&Ic~~~ff)T(~)~In/$l~(Rcl,+~~!c,n~u)T(~) 

This shows that in the region r where p Q 6 

1 

Re An+ 1 E I c,dff 
In -$- 

I I 
< T (x) < 0 

The estimate for Ei (a~, e) yields 

The choice of h is guaranteed, in accordance with (1.13), by the condition 1 8 1 < E* 

Since h > 0, we have 

The choice of h according to formula (1.13) implies, that 

h xza- 
Re h, + 1 e 1 c,niP >O 

therefore 

(2.19) 

f Ei [ \c q2 px < y s M (2.20) 

The formulas (2.19) and (2.20) show that the functions are continuous in the sphere p < 
6 including the point p L 0 , for any o > 0. The choice of h according to (1.13) 

ensures that b > 0, since C’ can be made to differ from C as little as required. 

3. Proof of the lsmmrr. Consider the Cauchy problem(Eqs. (2.7)) 

Lemma 1. The solution of the Cauchy problem in the region 2 is well defined I 
unique and continuously differentiable. The idea of proving such assertions for the hyper- 

bolic type systems was first proposed by Petrovskii [S] andis as follows. Since D is a 
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differential operator acting along the trajectories of the system (1. l), D E d / dt, i.e. 
by virtue of (1.1) D is a total derivative. Let z = iL (t, 20) be a general solution of 

this system, and x0 = u (0, x0). Then x0 = u (--t, 5). 
Consider the region 8 .of the space (5, t) formed by the set of trajectories of (1.1) emer- 

ging from I? (V (z) & d) at t = 0 . As we said before, S 3 2. Let us fix in 2 an 
arbitrary point (t, 2) and denote by L the part of the trajectory between the point (t, 
z) and its intersection at some point (0, x0) with the plane t = 0. Integrating the 

equations of (2.7) along the curve L, we obtain 

~i(t.5,e)-~i(0,2,,e)=~~(~+e~)Ipkdt 
k 

and for every z E I? we have x0 = u (-t, z) E I’. B y virtue of the initial conditions 

(3.1) 

It is clear that every solution of the Cauchy problem (2.7)’ is also a solution of the integ- 

ral equations (3.1) and vice versa. To continue with the proof, we use the following sys- 
tem of successive approximations : 

q+(O) (t, z, 8) = Ri (u (- f, 4) 

~i’“‘(t,5,e)=Ri(lL(-t,L-))+~C(~+e~)1~’dt 
k 

and we find that the proof does not differ at all from that given in [4] for a secondorder 

system. It appears that a numerical majorizing convergent series can be constructed, and 

this implies the uniform convergence of the series 

l#j”’ (t, z) + j; (91i’l’ (t, 2, 8) - 91j’ (t, z9 4) 

which proves that the solution of the Cauchy problem,is continuous in Z 
Lemma 2. Let $1 (t, 2, a) be a solution of the Cauchy problem, let the integrals 

Ii and Jij converge uniformly for v (5) & 1 and let lim qr (t, z) = 0. Then the 
functions 

yield a continuously differentiable solution of the system (2.3). 
Proof. Clearly it is sufficient to show that the functions Ei (z, E) satisfy the sys- 

tem (2.3). Integrating Eqs. (2.3) from 0 to 00 and taking into account the initial con- 
ditions, we obtain 

OD a+. - s +zt=qJ~(o,z, E) - $i (mvz, 8) = Ri (x) 
0 

Lemma 3. Let I& (t, Z, a) be a solution of the Cauchy problem and T (z) be an 
arbitrary stationary solution of the equation DT = 1. Then the functions 

TM 

%i(z, 8)= $.‘$i(t, 2, e)dt 
n 
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yield a solution of the system (2.3). 

C or011 ary . Let $i* (t, x) be any solution of Eqs. (2.7) and let T, (z) and Ta (3) 
be the two different solutions of the equation DT = 1. Then 

T*(x) 

&* tz> = 1 +i* (t, Z)& 

are components of the operator T*(x) 

Y = ~&i*(iC)a/&i 

of the one-parameter symmetry group of the system (1.1). The proof follows from com- 
bining the relations 

fr>, ,X,1 = R’, [D, X,1 = R*, Y == X, - XI : [D, Y1 = 0 

Lemma 4. Let T (x) be any solution of the equation D T = 1. Then t L 

T (x> - T (z,,) is the time of motion along the trajectory of the system (1. I) from 

the point x,, to the point x. 

Proof. 
l=DT== -$ T (a (G, 9) 

Fran: this follows T (u (sot)) L t $- @ (z$. When t 

wntly t =r: T (x) - T (x0). 
L- 0, CE, (x0) L- T (to) I cons+ 
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